Adaptive Asymptotic Bayesian Equalization Using a Signal Space Partitioning Technique
نویسندگان
چکیده
منابع مشابه
Signal bias removal using the multi-path stochastic equalization technique
We propose using Hidden Markov Models (HMMs) associated with the cepstrum coefficients as a speech signal model in order to perform equalization or noise removal. The MUlti-path Stochastic Equalization (MUSE) framework allows one to process data at the frame level: it is an on-line adaptation of the model. More precisely, we apply this technique to perform bias removal in the cepstral domain in...
متن کاملRemoving ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique
Background: The electrocardiogram artifact is a major contamination in the electromyogram signals when electromyogram signal is recorded from upper trunk muscles and because of that the contaminated electromyogram is not useful.Objective: Removing electrocardiogram contamination from electromyogram signals.Methods: In this paper, the clean electromyogram signal, electrocardiogram artifact and e...
متن کاملSignal Identification Using a New High Efficient Technique
Automatic signal type identification (ASTI) is an important topic for both the civilian and military domains. Most of the proposed identifiers can only recognize a few types of digital signal and usually need high levels of SNRs. This paper presents a new high efficient technique that includes a variety of digital signal types. In this technique, a combination of higher order moments and hi...
متن کاملSequence detection for binary ISI channels using signal-space partitioning
Binary symbol detection based on a sequence of finite observation signals is formulated in the multidimensional signal space. A systematic space partitioning method is proposed to divide the entire space into two decision regions using a set of hyperplanes. The resulting detector structure consists of K parallel linear classifiers followed by a K-to-1 Boolean mapper, and is well suited to high-...
متن کاملDelay-Constrained Asymptotically Optimal Detection using Signal-Space Partitioning
|A signal-space detector estimates the channel input symbol based on the location of the nite-length observation signal in a multi-dimensional signal-space. The decision boundary is formed by a set of hyperplanes. The resulting detector structure consists of linear discriminant functions, threshold detectors, and a Boolean logic function. Our goal is to minimize the number of linear discriminan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2004
ISSN: 1053-587X
DOI: 10.1109/tsp.2004.826162